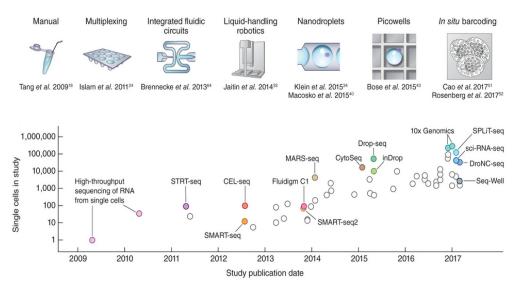
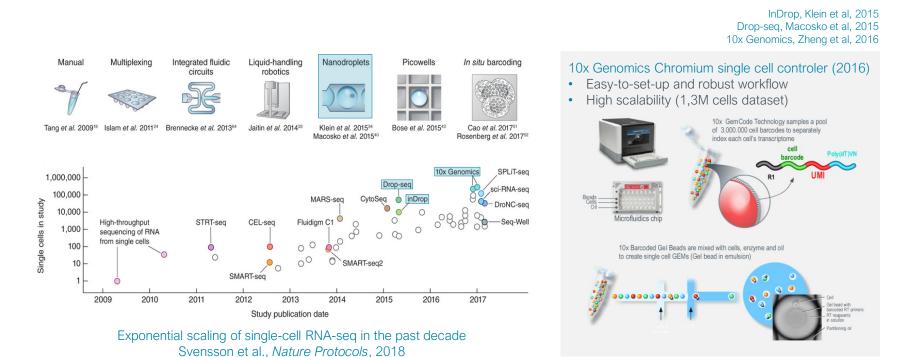
Single-cell to Spatial Isoform Transcriptomics

Kévin LEBRIGAND, PhD Institut de Pharmacologie Moléculaire et Cellulaire Université Côte d'Azur, CNRS, France.

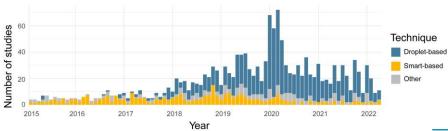
- lebrigand@ipmc.cnrs.fr
- ✓ @kevinlebrigand
- @ @kevinlebrigand@genomic.social



Single-cell Transcriptomics (NGS) Nature Method Of the Year 2013

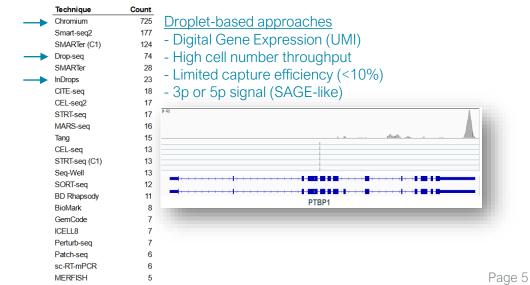

· Ohese-song in the sportlight Assessing local resolution in crys-EH map
Intestinal stem cell caltare Guantifying proteomics targets of electrophil
METHOD OF THE YEAR 2003

Evolution of isolation techniques and throughput

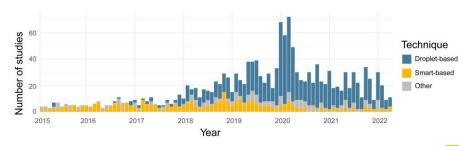


Exponential scaling of single-cell RNA-seq in the past decade Svensson et al., *Nature Protocols*, 2018

Droplet-based approaches



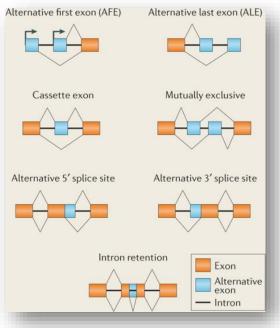
Single cell approaches in publications



A curated database reveals trends in single cell transcriptomics Svensson et al., Database , 2020

- Huge amount of single-cell studies in the past 5 years,
- Droplet-based approaches = 61% (Chromium: 47%)

Single cell approaches in publications


A curated database reveals trends in single cell transcriptomics Svensson et al., Database , 2020

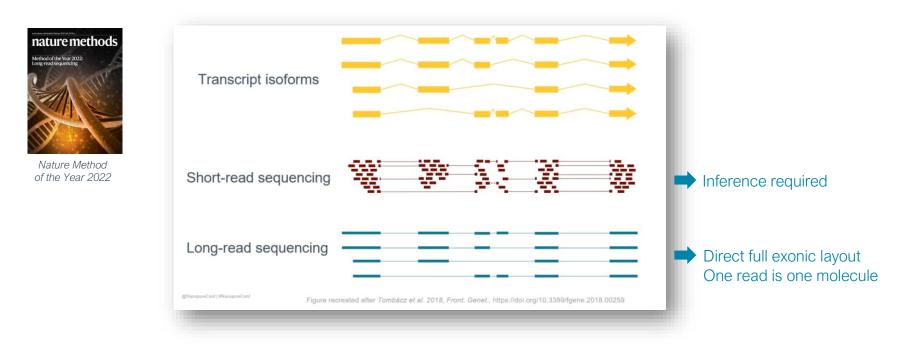
- Huge amount of single-cell studies in the past 5 years,
- Droplet-based approaches = 61% (Chromium: 47%)
- Smart-based approach = 21%, <5% in the last 2 years

Technique Chromium	Count 725	Smart-based approach
Smart-seq2	177	· · · · · · · · · · · · · · · · · · ·
SMARTer (C1)	124	- No UMI before v3 (may 2020)
Drop-seg	74	- Lower cell number (384-plate handling)
SMARTer	28	
InDrops	23	- Higher capture efficiency (~30%)
CITE-seq	18	- Full-length coverage using short-reads
CEL-seq2	17	Tail length obverage using short reads
STRT-seq	17	
MARS-seq	16	
Tang	15	
CEL-seq	13	
STRT-seq (C1)	13	
Seq-Well	13	
SORT-seq	12	
BD Rhapsody	11	
BioMark	8	
GemCode	7	
ICELL8	7	
Perturb-seq	7	
Patch-seq	6	
sc-RT-mPCR	6	
MERFISH	5	

Transcriptomics

Complex outcomes of alternative splicing

Scotti and Swanson, Nat Rev Genet., 2016


- 90% of the genes are subjected to alternative splicing,
- Gencode v42 : 252,416 distinct isoforms for 62,696 genes,
- On average, a human gene contains 8.8 exons, mean size of 145 nt,
- Average encodes mRNA 2,410 nt long :

5' UTR	Coding sequence	3' UTR
770nt	1,340nt	300nt

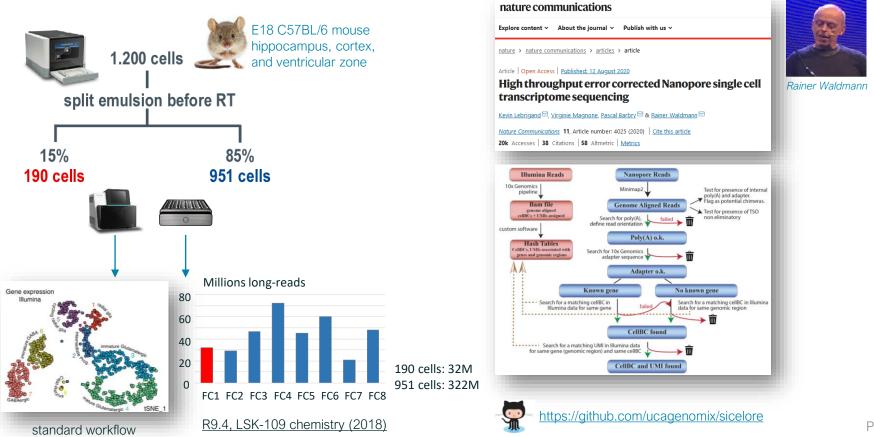
Alternative splicing and disease Tazi et al., 2008

Long-read sequencing identifies isoforms efficiently

Nature Method Of The Year 2022

Single-cell long-read transcriptomics

Droplets-based approach short reads vs long reads

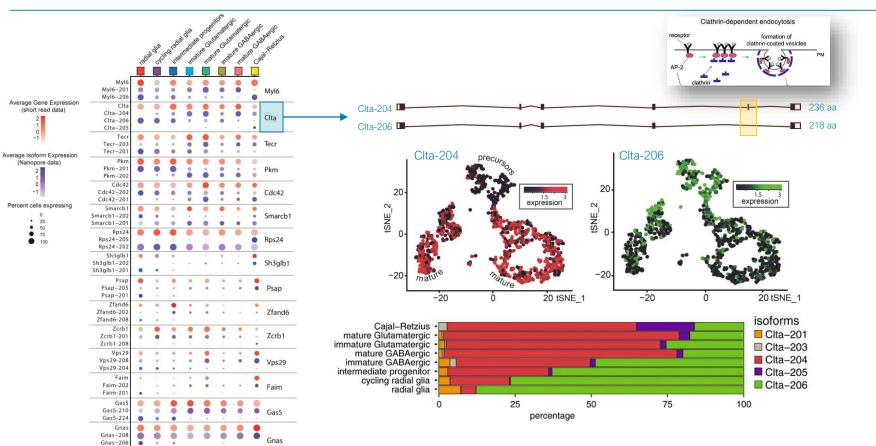

Information on alternative splicing, fusion transcripts, SNV, editing, imprinting

is lost

remain accessible

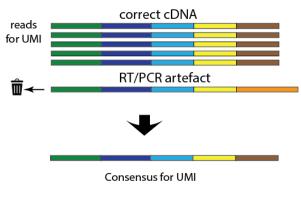
Single-cell long-read transcriptomics

SiCeLoRe, bioinformatics for Single Cell Long Read

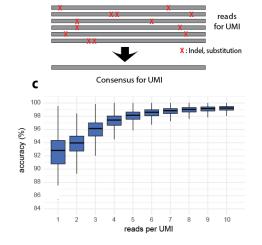


Single-cell long-read transcriptomics reveals diversity

76 isoform-switching genes along neuronal maturation


Gnas-205

.

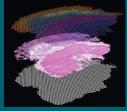

Single-cell long-read transcriptomics reveals sequence heterogeneity

Consensus sequence computation per UMI

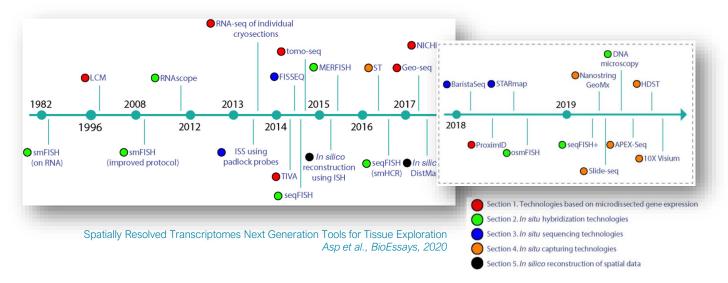
UMIs enable elimination of PCR artifacts

UMIs enable correction of sequencing errors

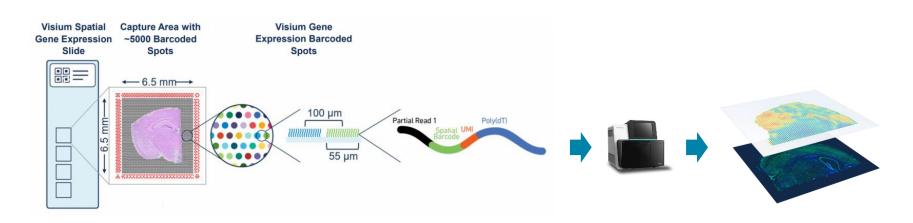
Crucial for accurate novel isoform discovery

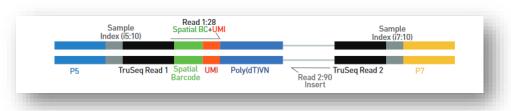

High accuracy for Single Nucleotide Variation call

Spatial Transcriptomics (NGS) Nature Method Of the Year 2020


Method of the Year 2020: Spatially resolved transcriptomics

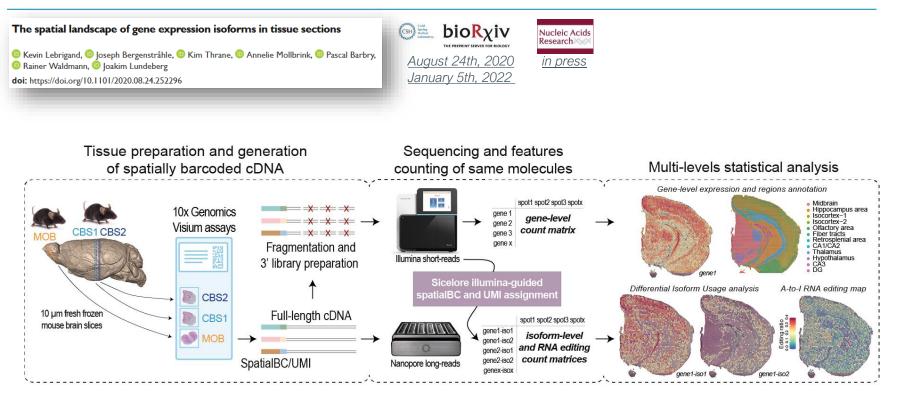
Spatial transcriptomics approaches


Timeline

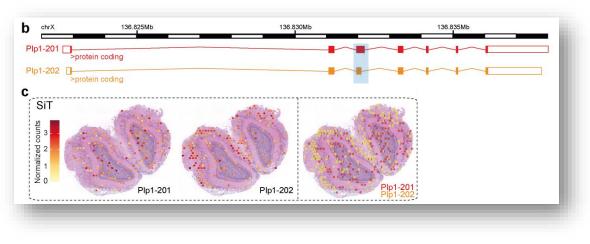

- Spatial transcriptomics aims at directly visualize gene expression in their original environment,
- It tackles the main limitation of single cell experiment missing the spatial organization,
- A lot of developments in the last years thanks to recent advances in different fields,

In-situ capture spatial transcriptomics

10x Genomics Visium (2019)

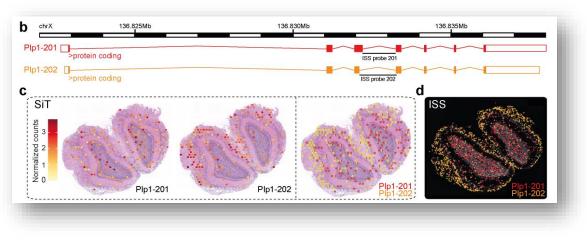


→ Spatial barcode / UMI assignment strategy identical to single cell transcriptomics


Spatial isoform Transcriptomics (SiT)

The spatial landscape of gene expression isoforms in tissue sections

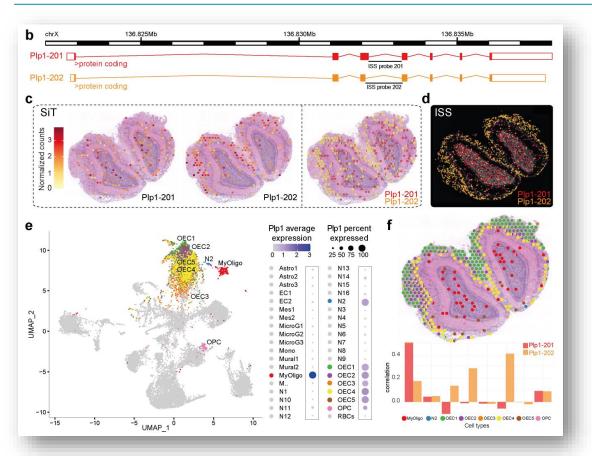
SiT reveals specific splicing pattern across MOB regions


Plp1 Differential Transcript Usage (DTU)

Proteolipid Protein 1 (Plp1) is a gene involved in severe pathologies associated with CNS dysmyelination

SiT reveals specific splicing pattern across MOB regions

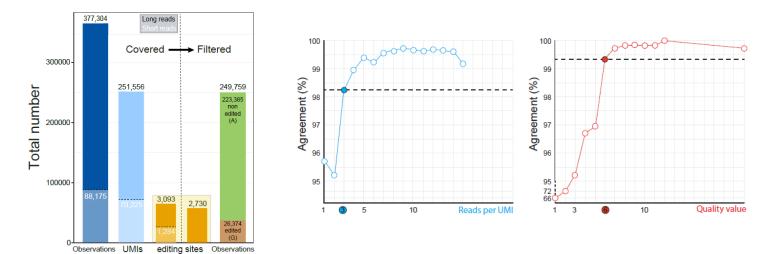
Plp1 Differential Transcript Usage (DTU)


Proteolipid Protein 1 (Plp1) is a gene involved in severe pathologies associated with CNS dysmyelination

In Situ Sequencing Data

SiT reveals specific splicing pattern across MOB regions

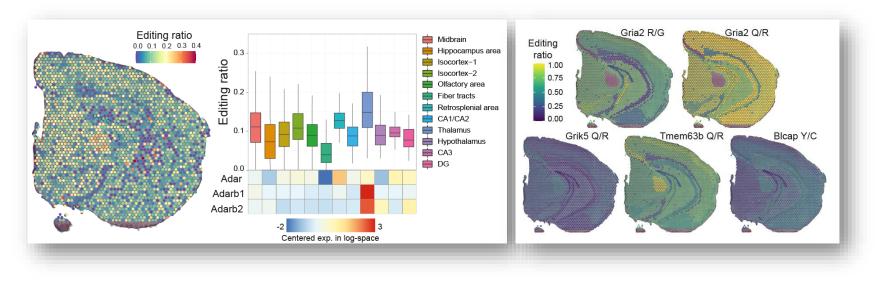
Cell type deconvolution using single cell external dataset (Tepe et al., 2018)


Proteolipid Protein 1 (Plp1) is a gene involved in severe pathologies associated with CNS dysmyelination

Spatial spot deconvolution of prominent *Plp1* expresser cell types. Correlation Deconvolution score / *Plp1* isoforms expression correlation shows that *Plp1* is predominantly expressed as Plp1-202 by olfactory ensheathing cells (OEC) in the ONL and as Plp1-201 isoform by myelinating-oligodendrocytes (MyOligo) in the GCL.

SiT reveals full-length sequence heterogeneity

High confidence SNV call (>99%) calibration using long- vs short-read agreement

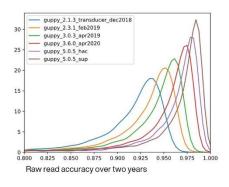

- Exploration of 5,817 A-to-I RNA editing sites described in the literature (Ramaswami et al., 2013 (RADAR), Licht et al., 2019)
- Calibration by looking at agreement between long and short read base calls for 88,175 shared UMI / Editing site observations
 - number of reads per UMI >= 3
 - consensus Phred score QV >= 6

SiT reveals full-length sequence heterogeneity

Mouse brain map of A-to-I RNA editing activity

• Exploration of 5,817 A-to-I RNA editing sites described in the literature (Ramaswami et al., 2013 (RADAR), Licht et al., 2019)

Single cell and Spatial isoform transcriptomics


Summary

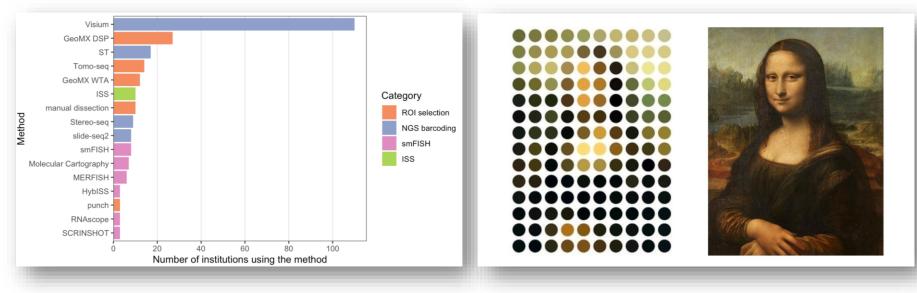
- Accurate single-cell and spatial transcriptomics using Nanopore long-read sequencing is feasible
- Long reads sequencing reveals transcript diversity that is missed with standard short reads workflows
- Single Nucleotide Variation calls (SNV, editing) in single-cell and in a spatial context can be achieve

Single cell and Spatial isoform transcriptomics

Summary

- Accurate single-cell and spatial transcriptomics using Nanopore long-read sequencing is feasible
- Long reads sequencing reveals transcript diversity that is missed with standard short reads workflows
- Single Nucleotide Variation calls (SNV, editing) in single-cell and in a spatial context can be achieve
- Sicelore-2.1 : we don't need short reads anymore

Nanopore PromethION sequencing 2018: 20M reads/FC, 92% raw read accuracy 2022: 150M reads/FC, 98% raw read accuracy


- Visium and single-cell 3' and 5' libraries
- Illumina-free profiling available

Spatial single-cell transcriptomics (imaging)

Spatial transcriptomics technologies (2020-2022)

Visium is widely adopted by academics

But is not the ideal readout for spatial biology (Akoya credit rough caricature)

Spatial imaging technologies (2023)

No more sequencing for direct single-cell resolution

- 960 targets
- Sensitivity : < 30-80%
- Resolution: 200 nm
- Imaging area: 16 mm2

Vizgen Merscope Merfish

- 500 targets (1,000 soon)
- Sensitivity : 30-80%
- Resolution: 100 nm

Target Region 1

1= signal

0=no signal

• Imaging area: 100 mm2

RNA Transcript from Gene 1

Encoding Probes 1 -50

10xGenomics Xenium Cartana ISS, padlock probes / RCA

• 400 targets

Readout

Sequences

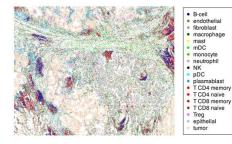
Bit position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

RNA Target 2 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0

RNA Target 1 0 0 0 0 1 1 1 0 0 0 0 0 0

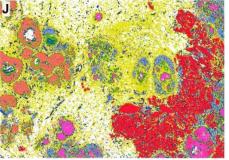
 RNA Target 3
 1
 0
 0
 1
 0
 0
 0
 1
 0
 0
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <t

- Sensitivity : 5-30%
- Resolution: 200 nm
- Imaging area: 25 mm2


Spatial imaging technologies (2023)

Compare available datasets

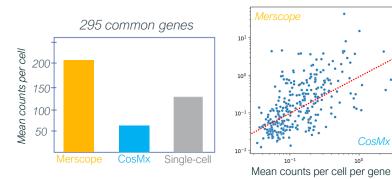
Vizgen Merscope


- <u>Xiaowei Zhuang's lab merfish publications</u>
 - Chen et al., Science (2015)
 - Moffitt et al., PNAS (2016), Science (2018)
 - Emanuel G et al., Nature Methods (2017)
 - Xia C. et al., PNAS (2019, Scientific Reports (2019)
 - Zhang M. et al., Nature (2021)
- Internal data release program
 - Human Immuno-oncology (breast, colon, lung, liver, skin, prostate, uterine and ovarian) 500 genes, >4 billion transcripts, 9 million cells
 - Mouse Liver Map (347genes)
 - Mouse brain Receptor Map (483 genes)
- External labs publications
 - Dixon E. et al., Kidney Int. (2022): Kidney
 - Wang et al., Nat. Neuro. (2022): Mouse olfactory Glomerular map
 - Stogsdill et al., Nature (2022): Neocortex microglia

Nanostring CosMx

- Release date: 11/2021
- FFPE Human NSCLC (Lung)
- 960 gene targets
- 8 sections for 800k cells
- Imaging area: 8 x 16 mm²
- 259,604,214 transcripts
- Mean transcripts/cell: 265

10xGenomics Xenium

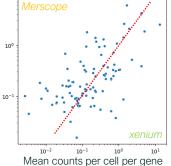

- Release date: 10/2022
- FFPE Human Breast cancer
- 313 gene targets
- 167,885 cells,
- 36,944,521 transcripts
- Imaging area: 40 mm²
- Mean transcripts/cell: 193

— ..

Spatial imaging technologies comparison

Compare available datasets: Lung and Breast cancer samples

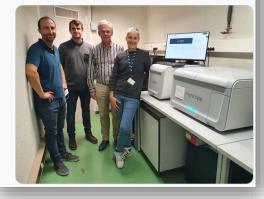

	nerroja	***
FFPE Human Lung Cancer	Merscope	CosMx
Total cells	353 k (x4)	92 k
Detected transcripts	107 M (x4)	26 M
Gene targets	500	960 (x2)
Total RPKM	9,204	61,680 (x6)
Mean transcripts/cell	302	284



https://vizgen.com/wp-content/uploads/2022/12/Vizgen-Spatial-Genomics-Data-Quality-eBook-1.pdf

FFPE Human Breast Cancer	Merscope	Xenium			
Total cells	713 k (x4)	168 k			
Detected transcripts	353 M (x10)	32 M			
Gene targets	500	313			
Total RPKM	9,909	7,912			
Mean transcripts/cell	495	193			

MERSCOPE @ UCAGenomiX (Nice-Sophia-Antipolis)


October 2022

tl William Amoyal Retweeted

Happy to announce the installation of our first Merscope at @UCAGenomix. Many thanks to @vizgen_inc people for amazing work and interactions. Great spatial transcriptomics work to come @fr genomics @discovAIR HCA @3lAcotedazur @IPMC sophia @CNRS

@tr_genomics @discovAIR_HCA @3IAcotedazur @IPMC_sophia @CNRs @Univ_CotedAzur @CanceropolePACA

Human Lung Cell Atlas (CZI)

Discovering the Cellular Landscape of the Airways and Lung Tissue

- 12 control / 2 IPF / 10 COPD patients
- 415k cells (117 samples)
- 48 cell types

 DSRemodeling (mouse model brain, Massimo Mantegazza, IPMC) Molecular and functional remodeling in the developmental and epileptic encephalopathy Dravet Syndrome (DS)

Pulmonary Arterial Hypertension (Christophe Guignabert, Paris-Saclay)

- 7 control / 7 PAH patients
- 69,949 cells
- 39 cell types

Acknowledgments

Institut de Pharmacologie Moléculaire et Cellulaire

Pascal Barbry Lab (IPMC, CNRS, France)

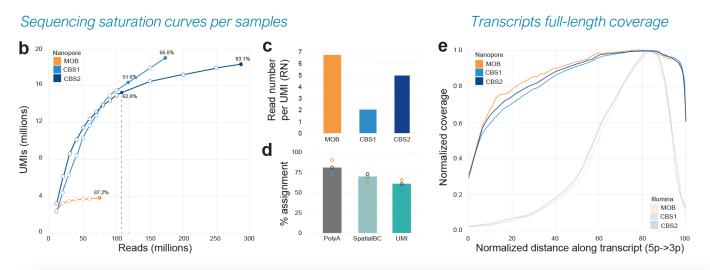
Rainer Waldmann

Joakim Lundeberg Lab (KTH Royal Institute of Technology, Sweden)

- Joseph Bergenstråhle
- Kim Thrane

UCAGenomiX platform (IPMC, CNRS, France)

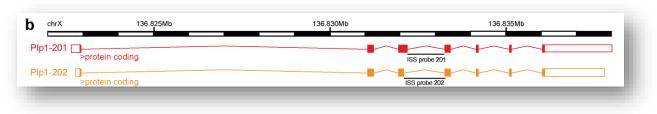
• Marie-Jeanne Arguel



Page 31

Spatial isoform Transcriptomics (SiT)

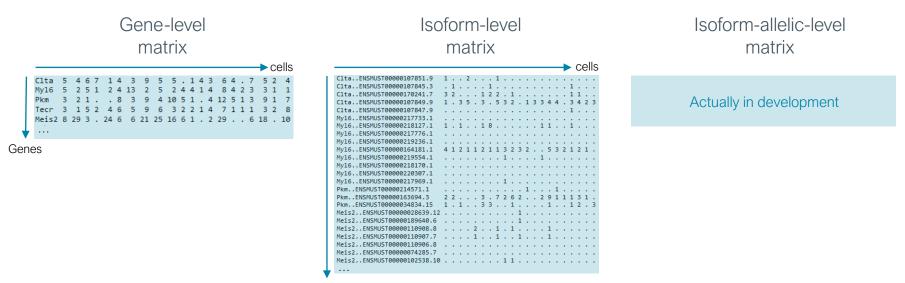
Nanopore long-read sequencing



Reads	N	MOB CBS1				CBS2										
Date	18 feb. 20	20 mar. 20	18 feb. 20	20 mar. 20	24 feb. 21	12 may 20	13 may 20	19 may 20	25 may 20	25 may 20	26 may 20	27 may 20	09 feb. 21	Total		
Flow cells	PAE06474	PAE59649	PAE01745	PAE59645	PAG52067	PAE59606	PAE59231	PAE32756	PAE32753	PAE31188	PAE21339	PAD99555	PAG56368	13		
Total reads (fastq_pass)	27628000	47272000	24980000	31736000	117280000	22897702	30405384	27492770	18534938	31506774	19108718	25596387	110916000	535354673	%age	
PolyA and Adapter found reads	21318117	47970311	17980183	27286678	80516212	18536047	25199992	22871198	16088962	26777546	15983663	21682530	85837208	428048647	79,96	of Total passed reads
SpatialBC found reads	14506264	29316718	12554655	19051597	54323311	14613934	19867830	14666481	11403706	19099469	11266930	14090779	60154119	294915793	68,90	of PolyA found reads
UMIs found reads	10445006	19328468	7323748	10517081	27584331	8616415	11714126	9347072	7557944	12657620	7448718	9031708	34225619	175797856	59,61	of SpatialBC found read

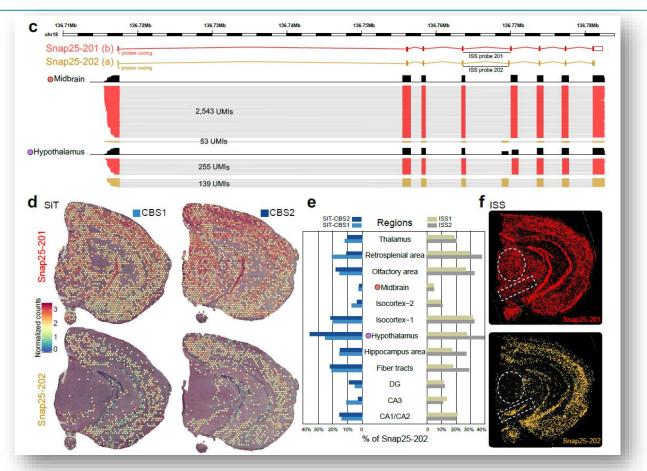
CBS1: One flow cell, 117 M reads \rightarrow 51.6% sequencing saturation CBS2: One flow cell, 111 M reads \rightarrow 62.2% sequencing saturation \rightarrow 1 or 2 Promethion flow cells per slice - R9.4, LSK-110 chemistry (2021)

Spatial imaging technologies


No more sequencing not compatible with isoform transcriptomics

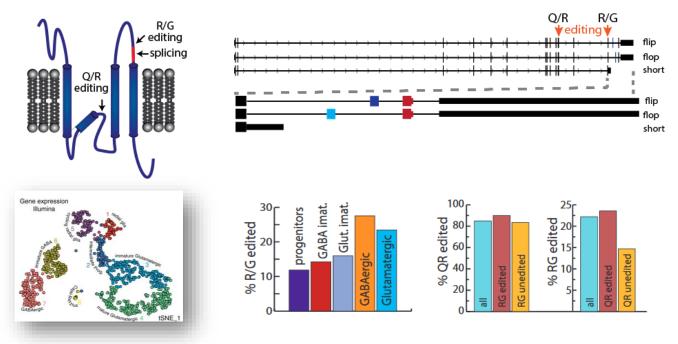
- Validating one exon-exon junction is not really the same as validating a full-length isoform (complete exons layout required)
- Current limitations in # target genes is even more an issue when dealing with the huge amount of exon-exon junctions, Human Ensembl GRCh38.108:
 - 20,036 protein coding genes,
 - 170,185 described isoforms,
 - 626,750 unique exons,
 - 616,988 unique exon-exon junctions
- Even in case of no more limitation in # targets, we would not be able to link together individual exon-exon signal to reconstitute unambiguously each gene isoforms expression

From Gene-level to Isoform-level long-read profiles


Enhanced description of single-cell transcriptome

Isoforms

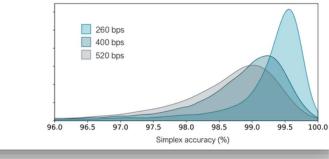
Snap25 DTU across CBS regions


Presynaptic plasma membrane protein involved in the regulation of neurotransmitter release

Single-cell long-read transcriptomics reveals sequence heterogeneity

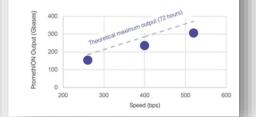
RNA editing of the AMPA receptor Gria2

Q/R site regulates AMPA receptor Ca²⁺-permeability R/G site is involved in desensitization and recovery of the receptor

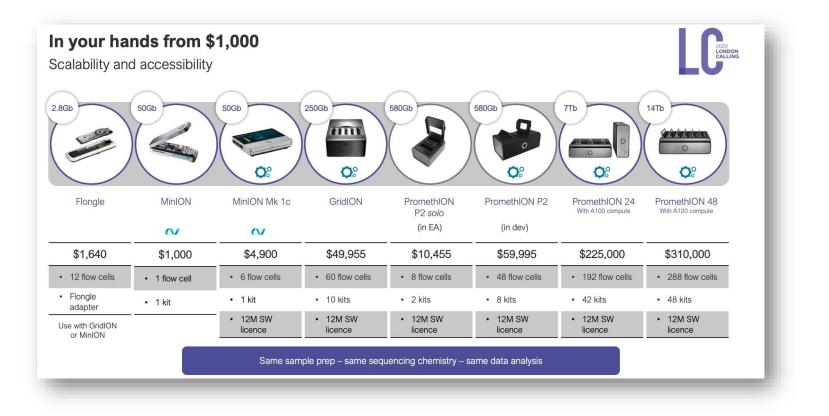

London Calling 2022

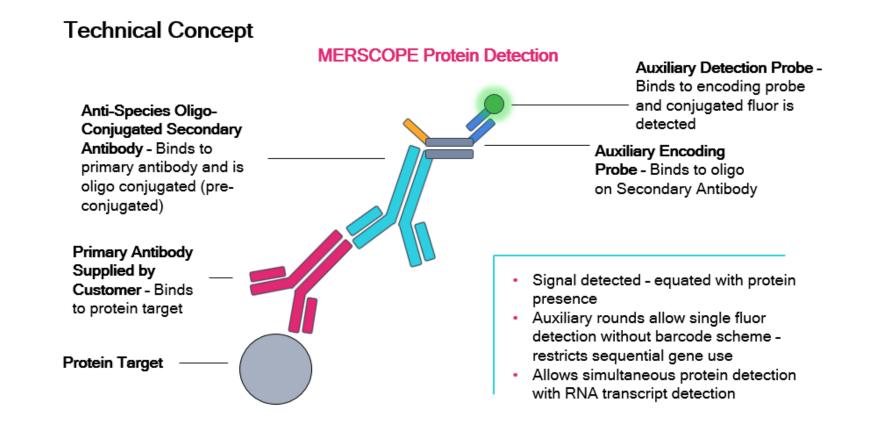
Nanopore Chemistry

Tuneable run settings


Same chemistry, different conditions

- Depending on the application requirement R10.4 / Kit14 can be run at different temperatures to tune the accuracy vs output
- · Appropriate models will be chosen automatically or selected by user
- · Example speeds and outputs
 - 260, 400, 520 bps
- Different accuracies
 - Simplex: 99.6%, 99.2%, 99.0%
 - Duplex: Q31, Q30, Q29


Choice of run condition


- Current focus is the 400 bps default condition
 - Demonstrated 236 Gbases from PromethION flow cell
 - Modal accuracy 99.2 % (Q21)
- Choice of run condition coming soon
 - "Accuracy" 260 bps, "Default" 400 bps, "Output" 520 bps
 - 99.6% (Q24) @ 260 bps, 307 Gbases @ 520 bps

London Calling 2022

