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• Large-scale transcriptome
• Oligonucleotide probe tilling
• Fluorochromesignal analysis
• Bulk resolution

• Whole transcriptome
• Next Generation Sequencing
• Full-transcript coverage
• Bulk resolution

• Whole transcriptome
• Microfluidics + NGS
• 3p-end gene signal (UMI)
• Sensitivity (6%)
• Single-cell / state resolution

• 300-1000 gene targets
• Imaging analysis
• Multiplexing FiSH(single molecule)
• Sensitivity (30-80%)
• Sub-cellular resolution

Early 2000’s: DNA microarray Late 2000’s : RNA sequencing Mid 2010’s: Single -cell 2020’s : Spatial

20 years of transcriptomics
Driven by microfluidics technological developments

Cost : 4k€
20 samples
25k genes
0,5M matrix

Cost : 4k€
20 samples
50k genes
1M matrix

Cost : 4k€
5k cells
50k genes
250M matrix

Cost : 4k€
250k cells
1k genes
250M matrix
+ Spatial dimension






Human Cell Atlas
CZI initiative (2016)

Mission to create comprehensive reference maps of all human cells, the fundamental units of life, 
as a basis for both understanding human health and diagnosing, monitoring, and treating disease.



Cell x Gene
https://cellxgene.cziscience.com/

Free-to-use service (API + Data) 
that allows for querying its 
single-cell data corpus directly 
into Python or R.

https://cellxgene.cziscience.com/


Human Cell Atlas
Pascal Barbry’s lab contribution
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Exponential scaling of single-cell RNA-seq in the past decade
Svensson et al., Nature Protocols, 2018

Single -cell transcriptomics
Evolution of isolation techniques and throughput



10x Genomics Chromium single cell controler (2016)
• Easy-to-set-up and robust workflow 
• High scalability (1,3M cells dataset)

Single -cell transcriptomics
Droplet-based approaches

Exponential scaling of single-cell RNA-seq in the past decade
Svensson et al., Nature Protocols, 2018

InDrop, Klein et al, 2015
Drop-seq, Macosko et al, 2015

10x Genomics, Zheng et al, 2016



Single -cell transcriptomics
Single cell approaches in publications

Droplet-based approaches
- Digital Gene Expression (UMI)
- High cell number throughput
- Limited capture efficiency (<10%)
- 3p or 5p signal (SAGE-like)

A curated database reveals trends in single cell transcriptomics
Svensson et al., Database, 2020

• Huge amount of single-cell studies in the past 5 years,
• Droplet-based approaches = 61% (Chromium: 47%)



Single -cell transcriptomics
Single cell approaches in publications

• Huge amount of single-cell studies in the past 5 years,
• Droplet-based approaches = 61% (Chromium: 47%)
• Smart-based approach = 21%, <5% in the last 2 years

A curated database reveals trends in single cell transcriptomics
Svensson et al., Database, 2020

Smart-based approach 
- Lower cell number (384-plate handling)
- Higher capture efficiency (~30%)
- No UMI before v3 (may 2020)
- Full-length coverageusing short-reads

UMIs detected in HEK293 cells
Droplets 10x: 30k (50k reads)
Plate-based : 60k  (200k reads)
Smart-seq3: 150k (750k reads)

Mantis Microdispenser



• 90% of the genes are subjected to alternative splicing,
• Gencode v42 : 252,416 distinct isoforms for62,696 genes,
• On average, a human gene contains 8.8 exons, mean size of 145 nt,
• Average encodes mRNA 2,410 nt long :

Alternative splicing and disease
Tazi et al., 2008

Transcriptomics

Scotti and Swanson, Nat Rev Genet., 2016

Complex outcomes of alternative splicing

Coding sequence

1,340nt

3’ UTR

300nt

5’ UTR

770nt

Inference required

Direct full exonic layout
One read is one moleculeNature Method 

of the Year 2022



Information on alternative splicing, fusion transcripts, SNV, editing, imprinting, allelic imbalance
Remain accessibleIs lost

Standard short-read sequencing Long-read full-length sequencing

Droplets -based approach short reads vs long reads
Single -cell long -read transcriptomics

Gene-level
matrix

Isoform-level
matrix



Single -cell long -read t ranscriptomics
SiCeLoRe, bioinformaticsfor Single Cell Long Read

E18 C57BL/6 mouse
hippocampus, cortex, 
and ventricular zone

80 

60 

40 

20 

0

Millions long-reads

FC1 FC2 FC3 FC4 FC5 FC6 FC7 FC8

190 cells: 32M
951 cells: 322M

R9.4, LSK-109 chemistry (2018)standard workflow
https://github.com/ucagenomix/sicelore

Rainer Waldmann

https://github.com/ucagenomix/sicelore


Single -cell long -read t ranscriptomics reveals diversity
76 isoform-switching genes along neuronal maturation

Clta-204

Clta-206

Clta-204 Clta-206

236 aa

218 aa



Q/R site regulates AMPA receptor Ca2+-permeability
R/G site is involved in desensitization and recovery of the receptor

Single -cell long -read sequencing reveals sequence heterogeneity
RNA A-to-I editing of the AMPA receptor Gria2 



Single -cell long -read t ranscriptomics reveals sequence heterogeneity
Consensus sequence computation per UMI

UMIs enable elimination of PCR artifacts UMIs enable correction of sequencing errors

Crucial for accurate novel isoform discovery Crucial for high accuracy SNV call

Nanopore PromethION sequencing

2018: 30M reads/FC, 92% raw read accuracy

2023: 120M reads/FC,99% raw read accuracy

Sicelore is now short-read free:
https://github.com/ucagenomix/sicelore-2.1



Spatial isoform Transcriptomics
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Spatial Transcriptomics approaches
Historical timeline

• Spatial transcriptomics aims at directly visualize gene expression in their original environment,
• Tackle the main limitation of single cell experiment missing the spatial organization,
• A lot of developments in the last years thanks to recent advances in different fields,

Spatially Resolved Transcriptomes Next Generation Tools for Tissue Exploration 
Asp et al., BioEssays, 2020

Merscope
Cosmx
Xenium

Slide-seq-v2
Stereo-seq
DBiT-seq



In-situ capture spatial transcriptomics
Ståhl et al. (2016); 10x Genomics Visium (2019)

 Spatial barcode / UMI assignment strategy identical to single cell transcriptomics



Spatial isoform Transcriptomics ( SiT)
Nucleic Acids Research, 2023



Nanopore promethION long -read sequencing
Provides isoform-levelspatial transcriptomics

Page 21

CBS1: One flow cell, 117 M reads  51.6% sequencing saturation
CBS2: One flow cell, 111 M reads  62.2% sequencing saturation
 1 or 2 Promethion flow cells per slice

Transcripts full-length coverageSequencing saturation curves per samples



SiT reveals specific splicing pattern across MOB regions
Plp1 Differential Transcript Usage (DTU)

ProteolipidProtein1 (Plp1) is a gene
involved in severe pathologies
associatedwith CNS dysmyelination



SiT reveals specific splicing pattern across MOB regions
Plp1 Differential Transcript Usage (DTU)

In Situ SequencingData

ProteolipidProtein1 (Plp1) is a gene
involved in severe pathologies
associatedwith CNS dysmyelination



SiT reveals specific splicing pattern across MOB regions
Cell type deconvolution using single cell external dataset (Tepeet al., 2018)

Spatial spot deconvolution of prominent Plp1
expresser cell types. Correlation Deconvolution
score / Plp1 isoforms expression correlation
shows that Plp1 is predominantly expressed as
Plp1-202 by olfactory ensheathing cells (OEC) in
the ONL and as Plp1-201 isoform by myelinating-
oligodendrocytes (MyOligo) in the GCL.

Proteolipid Protein 1 (Plp1) is a gene
involved in severe pathologies
associated with CNS dysmyelination

In Situ Sequencing Data



SiT reveals full -length sequence heterogeneity (CBS)
Global A-to-I RNA editing spatial map

• Exploration of 5,817 A-to-I RNA editing sites described in the literature (Ramaswamiet al., 2013 (RADAR), Licht et al., 2019)

• Long read high confidence call thresholding, looking at agreement between long and short read base calls for 88,175 shared UMIs

― number of reads per UMI >= 3

― consensus Phred score QV >= 6



SiT reveals full -length sequence heterogeneity (CBS)
Global A-to-I RNA editing spatial map

• Exploration of 5,817 A-to-I RNA editing sites described in the literature (Ramaswamiet al., 2013 (RADAR), Licht et al., 2019)

• Long read high confidence call thresholding, looking at agreement between long and short read base calls for 88,175 shared UMIs

― number of reads per UMI >= 3

― consensus Phred score QV >= 6

Individual A-to-I editing site editing ratio per region

Gria2
• R/G site is involved in desensitization 

and recovery of the receptor
• Q/R site regulates AMPA receptor 

Ca2+-permeability

Single-cell (lebrigand et al., 2020)



Spatial transcriptomics (2017 -2022)
Visium is widely adopted by academics

But is not the ideal readout for spatial biology
(Akoyacredit rough caricature)

• Deconvolution tools can be use to 
recover proportion of single cell type

• Visium HD single cell resolution (2µm)



Spatial imaging -based Transcriptomics
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Spatial imaging -based transcriptomics (2022)
No more sequencing for direct single-cell resolution

• Lower gene panel targets (from whole transcriptome to ~1,000 genes)
• Higher sensitivity (from ~6% to 30-80%)
• Larger imaging area(42 to 236 mm2)
• Higher resolution (from 55 µm to subcellular)



• Available(jan.24)
• 400 targets (panel 6k)
• Sensitivity : 5-30% (++)
• Imaging area: 236 mm2 (4 days)
• Resolution: 200 nm

• Limitedavailability
• 960 targets (panel 20k, AGBT24)
• Sensitivity : << 30-80% (+)
• Imaging area: 16 mm2 (2 days)
• Resolution: 200 nm

• Available(oct.22)
• 1.000 targets
• Sensitivity : 30-80% (+++)
• Imaging area: 100 mm2  (2 days)
• Resolution: 100 nm

Nanostring CosMx 10xGenomics XeniumVizgen Merscope

Spatial imaging -based transcriptomics (2022)
No more sequencing for direct single -cell resolution



Nanostring CosMx 10xGenomics XeniumVizgen Merscope

Spatial imaging -based transcriptomics (2022)
No more sequencing for direct single-cell resolution

ISH-based Multiplex Error-Robust FISH Cartana ISS, padlock probes / RCA

Cyclic in situHybridization Chemistries

x4-8 / target gene

x15-50
x1-5



• Xiaowei Zhuang’slab merfish publications
― Chen et al., Science (2015)
― Moffitt et al., PNAS (2016), Science (2018)
― Emanuel G et al., Nature Methods (2017)
― Xia C. et al., PNAS (2019, Scientific Reports (2019)
― Zhang M. et al., Nature (2021) 

• Internal data release program
― Human Immuno-oncology (breast, colon, lung, liver, 

skin, prostate, uterine and ovarian) 500 genes, >4 
billion transcripts, 9 million cells 

― Mouse Liver Map (347genes)
― Mouse brain Receptor Map (483 genes)

Vizgen Merscope

Spatial imaging -based technologies comparison
Compare available datasets

• Release date: 11/2021
• FFPE Human NSCLC (Lung)
• 960 gene targets
• 8 sections for 800k cells
• Imaging area: 8 x 16  mm2

• 259,604,214 transcripts
• Mean transcripts/cell: 265

Nanostring CosMx

• Release date: 10/2022
• FFPE Human Breast cancer
• 313 gene targets
• 167,885 cells, 
• 36,944,521 transcripts
• Imaging area: 40 mm2

• Mean transcripts/cell: 193

10xGenomics Xenium



Spatial imaging -based technologies comparison
Compare available datasets: Lung and Breast cancer samples

FFPE Human Lung Cancer Merscope CosMx

Total cells 353 k  (x4) 92 k

Detected transcripts 107 M (x4) 26 M

Gene targets 500 960

Total RPKM 9,204 61,680 (x6)

Mean transcripts/cell 302 284

FFPE Human Breast Cancer Merscope Xenium

Total cells 713 k  (x4) 168 k

Detected transcripts 353 M (x10) 32 M

Gene targets 500 313

Total RPKM 9,909 7,912

Mean transcripts/cell 495 193

https://vizgen.com/wp-content/uploads/2022/12/Vizgen-Spatial-
Genomics-Data-Quality-eBook-1.pdf

295 common genes

Merscope CosMx Single-cell

CosMx

Merscope

Mean counts per cell per gene
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Merscope xenium



Spatial imaging -based technologies comparison
Recent biorxiv comparative studies



MERSCOPE @ UCAGenomiX (Nice-Sophia -Antipolis)
October 2022

• Human Lung Cell Atlas (CZI)
Discovering the Cellular Landscape of the Airways and Lung Tissue

- 12 control / 2 IPF / 10 COPD patients
- 415,764 cells (117 samples)
- 48 cell types

• Human embryo olfactory epithelium exploration (Paolo Giacobini, Lille)
• Pulmonary Arterial Hypertension (Christophe Guignabert, Paris-Saclay)

- 7 control / 7 PAH patients
- 69,949 cells
- 39 cell types



Gene targets panel design
Depending on the biological question !

https://portal.vizgen.com/
https://cloud.10xgenomics.com/xenium-panel-designer

Depending of your specific scientific focus
• Identify all major cell types, resolve cell subtypes
• Explore functional information 
• Investigate interactions between cell types
• Ligand-receptors analysis
• Explore canonical signaling pathways 
• Profile immune checkpoint molecules 
• …

Satisfy technological system limitations
• Number of targets available
• Range of gene targets expression
• Total gene targets expression 
• Have a nice budget to spend (~15 k€)
• …

https://portal.vizgen.com/
https://cloud.10xgenomics.com/xenium-panel-designer


Experimental design 
Take advantage of the large imaging area

Each run is around 5 k€
multiplexing helps removing batch effect and increase replicates for a robust statistical analysis



Data acquisition (7 z -stack )
Staining for cell segmentation

DAPIchanel
Cell boundarieschanel

Nose

Eye

Tongue

Eye



Z
0
1
2
3
4
5
6

10 µm

3D segmentation required, actually not
used, 2D segmentation per Z then
harmonizingand summing the detected
transcripts for all Z into the harmonized
segmentationmask (nucleiof full cell)

Cell segmentation is crucial
Cell x gene matrix purity and good subsequent biology 



Detected transcripts to segmentation mask
Cell x gene matrix

Gene-level matrix

1.000 Genes

100k’s cells

…



Statistical data analysis
Several available suites

Dries’slab, Dana-FarberCancer Institute 
Satija’slab, NYGC

Theis’slab, helmholtz-munich Immunitastherapeutics

https://github.com/cobioda/scispy/Scverse ecosystem, Oliver Stegle & Fabian J. Theis



Single -cell standard data analysis
Access to 100’s of packages described in the last 5 years

Cell type correlation

Gene markers



Test if cells belonging to 2 clusters are close to each other
more often than expected (co-occurrence probability)

• Need to be in gene panel !!
• CellPhoneDB[Efremovaet al., 2020] 
• Omnipath [Türeiet al., 2016].

Bento is a Python toolkit for performing
subcellularanalysisof spatial transcriptomics
data.

for each cell, we count the
number of neighbors that are of
each cell type thus forming a
“neighborhood profile” vector of
length C, where C is the number
of cell types. We then cluster all
neighborhood profiles and call
each cluster a “niche”.

Neighbors enrichment analysis

Ligand -Receptor analysis

Sub-cellular exploration

Cellular niches analysis

Single -cell data analysis including the spatial resolution
A new vast area for computational biologists (just like single -cell 5 years ago !)
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