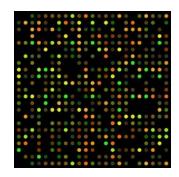
Imaging-based Spatial Transcriptomics

Biological Image Processing and Analysis (International Image Processing and Analysis) Nice, June 14th. 2024

Kévin Lebrigand Computational Biology and Omics Data Analysis IPMC, CNRS, Côte d'Azur University, France https://cobioda.github.io

lebrigand@ipmc.cnrs.fr


对 @kevinlebrigand

20 years of transcriptomics

Driven by microfluidics technological developments

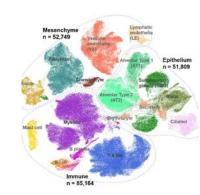
Early 2000's: DNA microarray

- Large-scale transcriptome
- Oligonucleotide probe tilling
- Fluorochromesignal analysis
- Bulk resolution

€ es s rix

Bulk resolution

Cost : 4k€ 20 samples 50k genes **1M matrix**

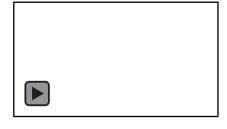

Whole Genome View

Late 2000's: RNA sequencing

Full-transcript coverage

Next Generation Sequencing

Whole transcriptome



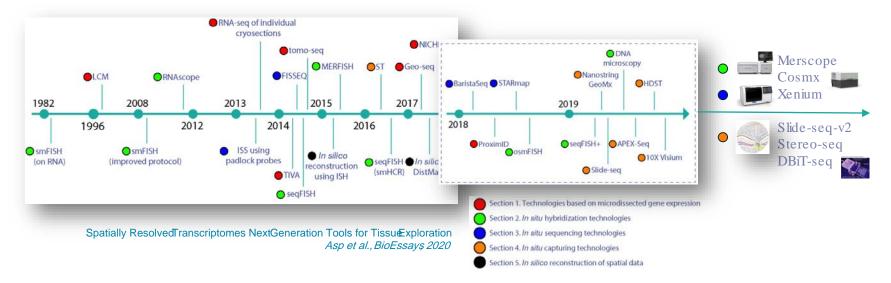
Mid 2010's: Single -cell

- Whole transcriptome
- Microfluidics + NGS
- 3p-end gene signal (UM)
- Sensitivity (6%)
 - Single-cell / state resolution

Cost : 4k€ 5k cells 50k genes **250M matrix**

2020's : Spatial

- 500-1000 gene targets
- Imaginganalysis
- MultiplexingFiSH(single molecule)
- Sensitivity (3080%)
- Sub-cellular resolution


250k cells 1k genes 250M matrix + Spatial dimension

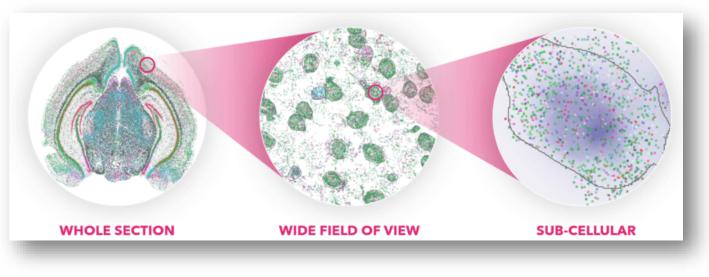
Cost : 4k€

Spatial Transcriptomics approaches

Historical timeline

- Spatial transcriptomics aimsat directly visualize gene expression in their original vironment
- Tacklethe main limitation of single celexperiment missing the spatial organization
- A lot of developments in the last years thanks to recentdvances in different fields

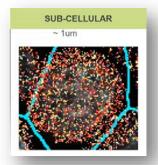
In-situ capture Spatial Transcriptomics (2017 -2022)


Visiumis widely adopted by academics

Imaging -based Spatial Transcriptomics (2022)

No more sequencing for direct singlecell resolution

- Lower gene panel targets(from whole transcriptome to ~1,000 genes)
- Higher sensitivity(from ~6% to 30-80%)
- Larger imaging area(42 to 236 mm2)
- Higher resolution(from 55 µm to subcellular)

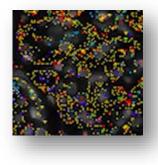

Imaging -based Spatial Transcriptomics (2022)

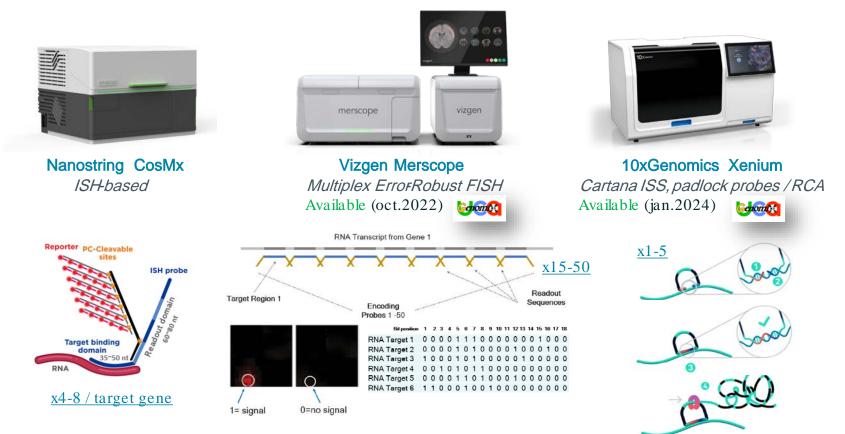
No more sequencing for direct single-cell resolution

Nanostring CosMx

- 960 targets (panel 20k, AGBT24)
- Sensitivity: << 30-80% (+)
- Imaging area:16 mm2 (2 days)
- Resolution:200 nm

Vizgen Merscope


- 1.000 targets
- Sensitivity: 30-80% (+++)
- Imaging area: 100 mm2 (2 days)
- Resolution 100 nm


10xGenomics Xenium

- 400 6,000 targets
- Sensitivity : 530% (++)
- Imaging area:236 mm2 (4 days)
- Resolution 200 nm

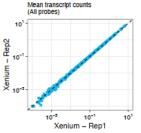
Imaging -based Spatial Transcriptomics (2022)

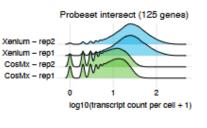
No more sequencing for direct single-cell resolution

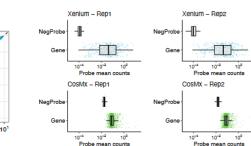
Cyclic in situHybridization Chemistries

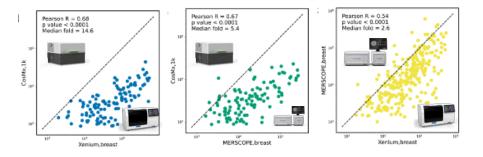
Imaging -based Spatial Transcriptomics platforms comparison

2 recent bioRxiv comparative studies


A Comparative Analysis of Imaging-Based Spatial Transcriptomics Platforms


David P. Cook¹, Kirk B. Jensen^{2,3,4}, Kellie Wise^{2,3}, Michael J. Roach^{2,3}, Felipe Segato Dezem^{6,7}, Natalie K. Ryan^{3,5}, Michel Zamojski⁹, Ioannis S. Vlachos^{10,11,12}, Simon R. V. Knott^{13,14}, Lisa M. Butler^{3,5}, Jeffrey L. Wrana^{1,15}, Nicholas E. Banovich¹⁶, Jasmine T. Plummer^{6,7,8*}, Luciano G. <u>Martelotto^{2,3*}</u>

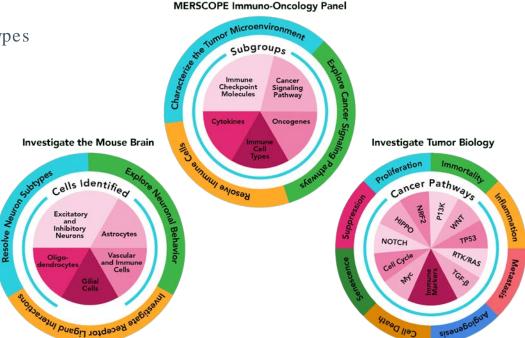

Systematic benchmarking of imaging spatial transcriptomics platforms in FFPE tissues


Huan Wang^{1,*}, Ruixu Huang^{2,*}, Jack Nelson^{1,*}, Ce Gao³, Miles Tran³, Anna Yeaton⁴, Kristen Felt⁵, Kathleen L. Pfaff⁶, Teri Bowman⁷, Scott J. Rodig^{6,7}, Kevin Wei^{,3,7}, Brittany A. Goods^{2,**}, Samouil L. Farhi^{1,**}

	Xenium Rep 1	Xenium Rep 2	CosMx Rep 1	CosMx Rep 2	
Gene target #	377	377	1000	1000	
Total cell count	99,852	102,508	96,139	98,767	
Median gene count per cell	33	34	75	71	
Median transcript count per cell	88	92	113	99	
Median transcript count / gene target count	0.23	0.24	0.11	0.10	
Median transcript count (intersecting targets only)	23	24	8	7	

- CosMx is much less sensitive (high FPR)
- Merscope / Xeniumfor Fresh frozen slice
- Xeniumoptimal for FFPEslice

Gene targets panel design


Depending on the biological question !

Depending of your specific scientific focus

- Identify all major cell types, resolve cell subtypes
- Explore functional information
- Investigate interactions between cell types
- Ligand-receptors analysis
- Explore canonical signaling pathways
- Profile immune checkpoint molecules
- ...

Satisfy technological system limitations

- Number of targets available
- Range of gene targets expression
- Total gene targets expression
- Budget around 15 k€ for 10 reactions

https://portal.vizgen.com/ https://cloud.10xgenomics.com/xeniumpanel-designer

Experimental design

Take advantage of the large imaging area

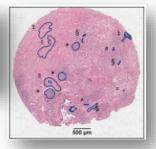
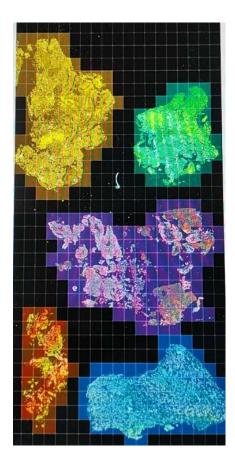


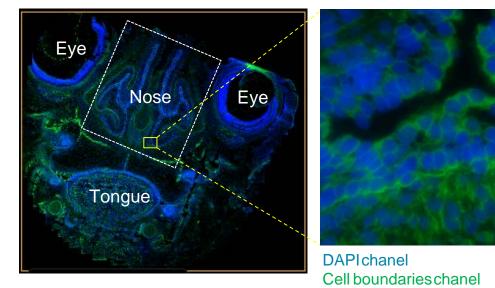
Image-based spatial transcriptomics identifies molecular niche dysregulation associated

Annika Vannan^{1,a}, Ruqian Lyu^{2,3,a}, Arianna L. Williams¹, Nicholas M. Negretti⁴, Evan D. Mee¹, Joseph Hirsh⁴, Samuel Hirsh⁴, David S. Nichols⁵, Carla L. Calvi⁵, Chase J. Taylor⁵, Vasiliy, V. Polosukhin⁵, Ana PM Serezani⁵, A. Scott McCall⁵, Jason J. Gokey⁵, Heejung Shim³, Lorraine B. Ware5.7, Matthew J. Bacchetta⁸, Ciara M. Shaver5, Timothy S. Blackwell^{5,9,10}, Rajat Walia¹¹, Jennifer MS Sucre^{4,9}, Jonathan A. Kropski^{5,9,10,b}, Davis J McCarthy^{2,3,b}, Nicholas E. Banovich^{1,b,*}

https://www.ihcworld.com/products/Quick-Ray-Mold.htm

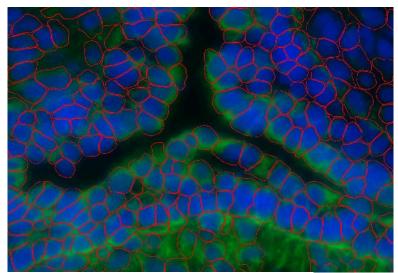


Each slide cost around5 k€


multiplexing to remove batch effect and increase replicates for robust statistical analysis

Data acquisition

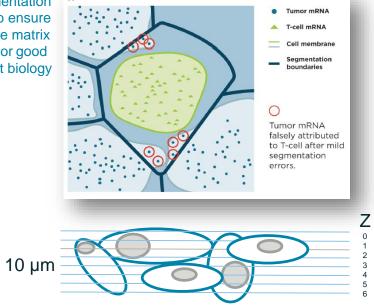
DAPI and cell boundaries staining for cell segmentation



Human fetal head section (PCW9)

Data acquisition

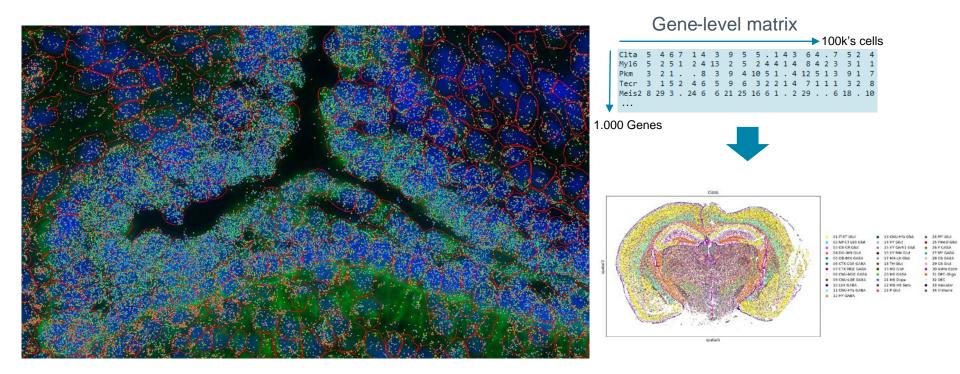
Cell segmentation


Article Published: 14 December 2020

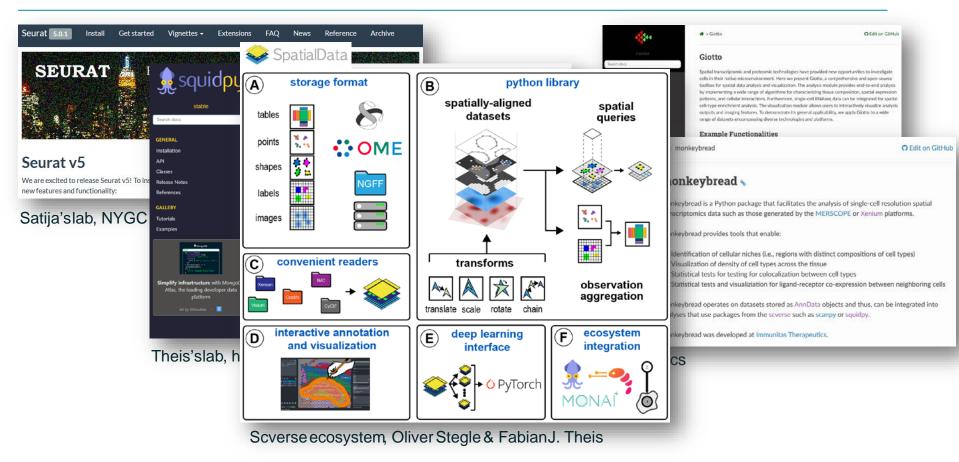
Cellpose: a generalist algorithm for cellular segmentation

Carsen Stringer, Tim Wang, Michalis Michaelos & Marius Pachitariu

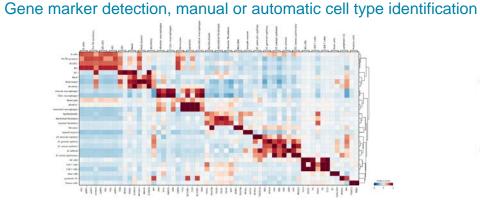
Nature Methods 18, 100–106 (2021) Cite this article


Cell segmentation is crucial to ensure cell x gene matrix purity for good subsequent biology

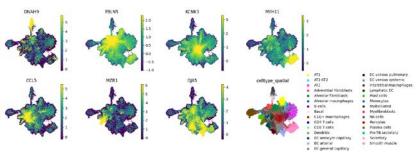
3D segmentation required, actually not used, 2D segmentation per Z then harmonizing and summing the detected transcripts for all Z into the harmonized segmentationmask (nuclei of full cell)


Raw data

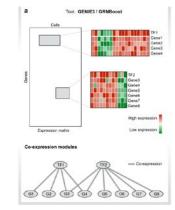
Cell x genematrix

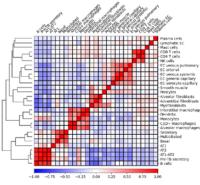

Statistical data analysis

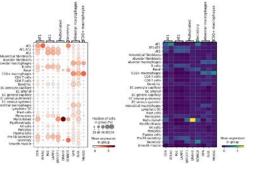
Standardized workflows + packages development



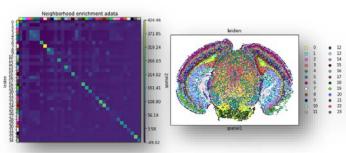
Single -cell data analysis


Scanpy and Squidpy toolkits

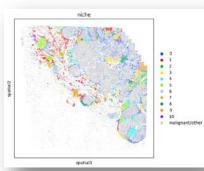

Batch effect correction, sample integration, cell type labeling transfer from single-cell references dataset


Transcription Regulatory Network

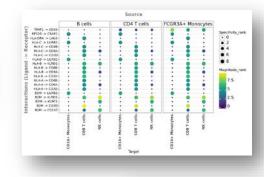
Cell type correlation



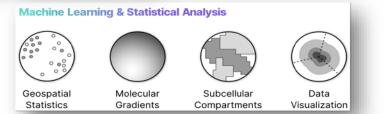
Differential expression analysis Gene set functional enrichment


Single -cell data analysis including spatial resolution

New vast area for computational biologists (just like single-cell 5 years ago)


Neighbors enrichment analysis

Test if cells belonging to 2 clusters are close to each other more often than expected (co-occurrence probability)


Cellular niches analysis

for each cell, we count the number of neighbors that are of each cell type thus forming a "neighborhood profile" vector of length C, where C is the number of cell types. We then cluster all neighborhood profiles and call each cluster a "niche".

Cell-cell communication Ligand-Receptor analysis

- Need to be in gene panelor inferred
- CellPhoneDB [Efremova et al., 2020]
- Omnipath [Türei et al., 2016].

Sub-cellular exploration

Bento is a Python toolkit for performing subcellular analysis of spatial transcriptomics

Acknowledgments

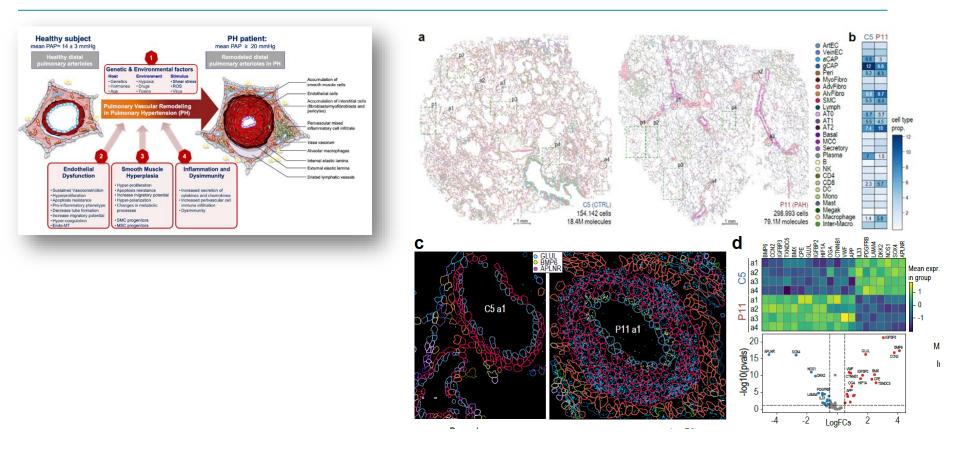
Institut de Pharmacologie Moléculaire et Cellulaire

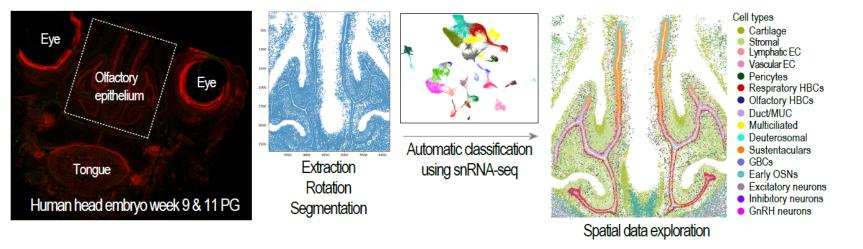
PascalBarbry's Lab (IPMC, CNRS, France)

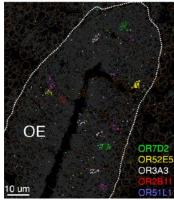
- VirginieMagnone •
- **Géradine** Rios •
- Marie Couralet
- ValentineFreschi •
- Marie-JeanneArguel

CoBiODAIPMC bioinformatics

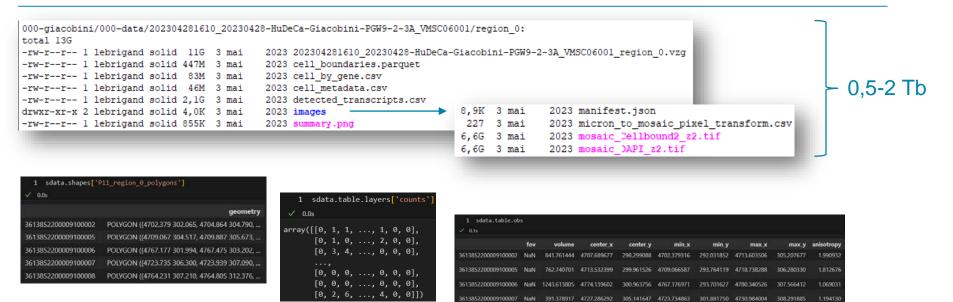
- **Kévin Lebrigand**
- Morgane Fierville
- Marin Truchi •
- EamonMcAndrew •




PAH : Pulmonary Arterial Hypertension


A rare vascular disorder

HuDeCa project


human fetal nosefrom 7 to 12 post-conceptional weeks (PCW) at singlecell resolution

MERSCOPE raw data

Standard Merscope output files

	У	gene	Unnamed: 0	global_z	transcript_id	fov	barcode_id	cell_id
76.288345	6615.9116	CFTR	138	0.0	ENST0000003084			
-0.706320	6656.7720	CFTR	480	0.0	ENST0000003084			
56.071490	6741.6104	CFTR	1284	0.0	ENST0000003084			3613852200420100110
-6.401468	6764.1587	CFTR	1479	0.0	ENST0000003084			
12.010611	6604,1650	CETR	1808	1.0	ENST0000003084	0	0	361385220039010064

3613852200009100008 NaN 680.804739 4768.106763 308.764922 4764.065981 303.609728 4772.968368 313.933532 1.204513