Spatial isoform TranscriptomicsS(iT)

Kévin Lebrigand Computational Biology and Omics Data Analysis https://cobioda.github.io IPMC, CNRS, Côte d'Azur University, France

- lebrigand@ipmc.cnrs.fr
- 2 @kevinlebrigand

Institute of Molecular and Cellular Pharmacology

Sophia-Antipolis

20 research teams composed of > 220 members

- Ion channels(pain, perception, epilepsy)
- Molecular signaling(molecular trafficking,lipidomics)
- Neurodegenerative disorders(Alzheimer, Parkinson)
- Neuropsychiatric disorders(nervous breakdown, mental retardation)
- Functional genomics and bioinformatics

15 Engineers running 5 technological platforms

- MICA, Imaging and Flow Cytometr MICA
- CAPABIO, Proteomics and Metabolomic CAPABIO
- ANIPRO, animal care and behavior facility
- CoBiODA, BioinformaticsHub
- UniCA GenomiX, Functional Genomics platforr 😼

Core member of the "France Génomique" network (2008, 60M€) > 500 academics

20 years of transcriptomics

Driven by microfluidics technological developments

Early 2000's: DNA microarray

- Large-scale transcriptome
- Oligonucleotide probe tilling
- Fluorochromesignal analysis
- Bulk resolution

Cost : 4k€ 20 samples 25k genes **0,5M matrix**

•

Cost : 4k€ 20 samples 50k genes **1M matrix**

Whole Genome View

Late 2000's: RNA sequencing

Next Generation Sequencing

• Whole transcriptome

Bulk resolution

Full-transcript coverage

Mid 2010's: Single -cell

- Whole transcriptome
- Microfluidics + NGS
- 3p-end gene signal (UM)
- Sensitivity (6%)
- Single-cell / state resolution

Cost : 4k€ 5k cells 50k genes **250M matrix**

2020's : Spatial

- 300-1000 gene targets
- Imaginganalysis
- MultiplexingFiSH(single molecule)
- Sensitivity (3080%)
- Sub-cellular resolution

250k cells 1k genes 250M matrix + Spatial dimension

Cost : 4k€

Human Cell Atlas

Our contribution

2019

TECHNIQUES AND RESOURCES | 23 OCTOBER 2019

Novel dynamics of human mucociliary differentiation revealed by single-cell RNA sequencing of nasal epithelial cultures ô

In collection: Human development

Sandra Ruiz Garcia, Marie Deprez, Kevin Lebrigand, Amélie Cavard, Agnés Paquet, Marie-Jeanne Arquel, Virginie Magnone, Marin Truchi, Ignacio Caballero, Sylvie Leroy, Charles-Hugo Marquette, Brice Marcet, Pascal Barby S €, Laure-Emmanuelle Zaragosi S €

+ Author and article information

Development (2019) 146 (20): dev177428

2019

Home > American Journal of Respiratory and Critical Care Medicine > List of Issues > Volume 202, Issue 12

A Single-Cell Atlas of the Human Healthy Airways

A 👲 21 125 👥 215

https://doi.org/10.1164/rccm.201911-21990C PubMed: 32726565 Received: November 15, 2019 Accepted: July 28, 2020

2020

High throughput error corrected Nanopore single cell transcriptome sequencing

Kevin Lebrigand 🖾, Virginie Magnone, Pascal Barbry 🖾 & Rainer Waldmann 🖼

Nature Communications 11, Article number: 4025 (2020) Cite this article

36k Accesses 83 Citations 67 Altmetric Metrics

2021

Analysis | Published: 02 March 2021

Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics

Christoph Muus[®], Malte D. Luecken[®], Gökcen Eraslan, Lisa Sikkema Avinash Waghray, Graham Heimberg, Yoshihiko Kobayashi, Esshit Dhaval Vaishaav, Ayshwaya Subramanian, Christopher Smillie, Karthik A. Jagadeesh, Elizabeth Thu Duong, Evgenij Eiskin, Elena Torlai Triglia, Meshal Ansari, Peiwen Cai, Brian Lin, Justin Buchanan, Sgia, Chen, Jian Shu, Adam L. Haber, Hattle, Chung, Daniel J., Montoro, Taylor Adams, The NHLBI LungMap, Consortium & The Human Cell Atlas Lung Biological Network + 9 pow autors

Nature Medicine 27, 546-559 (2021) Cite this article

53k Accesses | 197 Citations | 349 Altmetric | Metrics

2021 nature

Explore content Y About the journal Y Publish with us Y

nature > perspectives > article

Perspective | Published: 08 September 2021

A roadmap for the Human Developmental Cell Atlas

Muzlifah Haniffa[®], Deanne Taylor, Sten Linnarsson, Bruce J. Aronow, Gary D. Bader, Boger A. Barker, Pablo G. Camara, J. Gray, Camp, Alain Chédotal, Andrew, Copp, Heather, C., Etchevers, Paolo Giacobini, Berthold Göttgens, Guoji Guo, Ania Hupalowska Kyller, James, Emily Kithy, Amold Kriegstein, Joakim Lundeberg, John C., Marioni, Kerstin B., Mryer, Kathy K. Niakan, Mats, Nilsson, Bayanne, Olabi, Human Cell Atlas Developmental. Biological Network: + 5 now autors

NANOPORE

Nature 597, 196–205 (2021) Cite this article

65k Accesses | 87 Citations | 324 Altmetric | Metrics

2022

The discovAIR project: a roadmap towards the Human Lung Cell Atlas

Malte D. Luecken¹⁻²⁶, Laure-Emmanuelle Zaragosi ⁶²⁻²⁶, Elo Madissoon^{1-4,26}, Lisa Sikkema ^{61,26} Alexandra B. Firsova^{3,26}, Elana Domenico^{6,46}, Louis Kümmetle^{1,36}, Adem Saglam^{4,36}, Marijin Berg^{2,8,36}, Ludvig Larsson^{12,38}, Alexandros Sountoulidis^{5,36}, Sarah A. Teichmann¹¹, Karen van Eunen^{12,13}, Gerard H. Koppelman ^{61,27}, Kouroch Sach-Parzy¹⁵, Sylvie Leroy¹⁶, Pipp Powell¹⁶, Ugis Sarkans⁴, Wim Timens ^{61,4}, Joakim Lundeberg¹⁷, Maarten van den Berge^{18,38}, Mats Nilsson^{18,39}, Peter Horváth¹³, Jessica Denning¹⁸, Irene Pashteodorou¹, Joachim L. Schulte^{5,8,24}, Herbert B. Schlille⁷, Pasian J. They Petoukhov²⁷, Alexander V. Misharin²³, Ian M. Adocke^{6,14}, Michael von Papen^{8,5}, Fabian J. Theis¹, Christo Samakovis²⁶, Kerstin B. Meyer²⁶ and Martijn C. Nawin ^{6,16}

2023 nature medicine Explore content × About the journal × Publish with us ×

nature > nature medicine > resources > article

Resource | Open access | Published: 08 June 2023

An integrated cell atlas of the lung in health and disease

Lisa Sikkema. Ciro Ramírez-Sulategui. Daniel C. Strobl. Tessa E. Gillett. Luke Zappia. Elo Madissoon. Nikolay S. Markov. Laure-Emmanuelle Zaragosi. Yuge Ji. Meshal Anarai. Marie-Jeanne Arguel. Leonie Apperloo. Martin Banchero. Christophe Bécavin. Marijn. Berg. Evgeny. Chicheinitskiy. Mei-Lichung. Antoine. Collin. Aurore, C. A. Gay. Janine Gote-Schniering. Baharak Hooshiar Kashani. Kemal Incelk. Manu Jain. Theodore S. Kasellos. Lum Biological Network Concordium. _ Fabian J. Theis[®] + some aurore.

Nature Medicine 29, 1563-1577 (2023) Cite this article

72k Accesses | 59 Citations | 379 Altmetric | Metrics

2023

The spatial landscape of gene expression isoforms in tissue sections $\frac{1}{2}$

Kevin Lebrigand, Joseph Bergenstråhle, Kim Thrane, Annelie Mollbrink, Konstantinos Meletis, Pascal Barbry ☎, Rainer Waldmann, Joakim Lundeberg Author Notes

Nucleic Acids Research, Volume 51, Issue 8, 8 May 2023, Page e47, https://doi.org/10.1093/

Transcriptomics

Complex outcomes of alternative splicing

Scotti and Swanson, Nat Rev Genet., 2016

- 90% of the genes are subjected to alternative splicing,
- Gencode v42 : 252,416 distinct isoforms for62,696 genes,
- On average, a human gene contain **8.8 exons**, mean size of 145 nt,
- Average encodes mRNA2,410 nt long :

Single -cell long -read transcriptomics

SiCeLoRe, Nature Communication, 2020

Single -cell long -read transcriptomics reveals diversity

76 isoform-switching genes along neuronal maturation

Spatial Transcriptomics approaches

Historical timeline

- Spatial transcriptomics aimsat directly visualize gene expression in their original vironment
- Tacklethe main limitation of single celexperiment missing the spatial organization
- A lot of developments in the last years thanks to recentdvances in different fields

In-situ capture Spatial Transcriptomics (2017 -2022)

Visiumis widely adopted by academics

 \rightarrow Spatial barcode / UMI assignment strategy identical as the droplet-based single-cell approach

Spatial isoform Transcriptomics (SiT)

Nucleic Acids Research, 2023

Nanopore promethION long -read sequencing

Sample UMI complexity

Reads	MOB		CBS1			CBS2										
Date	18 feb. 20	20 mar. 20	18 feb. 20	20 mar. 20	24 feb. 21	12 may 20	13 may 20	19 may 20	25 may 20	25 may 20	26 may 20	27 may 20	09 feb. 21	Total		
Flow cells	PAE06474	PAE59649	PAE01745	PAE59645	PAG52067	PAE59606	PAE59231	PAE32756	PAE32753	PAE31188	PAE21339	PAD99555	PAG56368	13		
Total reads (fastq_pass)	27628000	47272000	24980000	31736000	117280000	22897702	30405384	27492770	18534938	31506774	19108718	25596387	110916000	535354673	%age	
PolyA and Adapter found reads	21318117	47970311	17980183	27286678	80516212	18536047	25199992	22871198	16088962	26777546	15983663	21682530	85837208	428048647	79,96	of Total passed reads
SpatialBC found reads	14506264	29316718	12554655	19051597	54323311	14613934	19867830	14666481	11403706	19099469	11266930	14090779	60154119	294915793	68,90	of PolyA found reads
UMIs found reads	10445006	19328468	7323748	10517081	27584331	8616415	11714126	9347072	7557944	12657620	7448718	9031708	34225619	175797856	59,61	of SpatialBC found reads

CBS1: One flow cell, 117 M reads \rightarrow 51.6% sequencing saturation CBS2: One flow cell, 111 M reads \rightarrow 62.2% sequencing saturation \rightarrow 1 or 2 Promethion flow cells per Visium slice

SiT reveals specific splicing pattern across MOB regions

Plp1 Differential TranscripUsage (DTU)

ProteolipidProtein1 (Plp1) is a gene involved in severe pathologies associated with CNS dysmyelination

SiT reveals specific splicing pattern across MOB regions

Plp1 Differential TranscripUsage (DTU)

ProteolipidProtein1 (Plp1) is a gene involved in severe pathologies associated with CNS dysmyelination

In Situ Sequencing Data

SiT reveals specific splicing pattern across MOB regions

Cell type deconvolution using single cell external dataseT (peet al., 2018)

Proteolipid Protein 1 (Plp1) is a gene involved in severe pathologies associated with CNS dysmyelination


```
In Situ Sequencing Data
```

Spatial spot deconvolution of *Plp1* expresser cell types

- → *Plp1* is expressed as Plp1-201 by myelinatingoligodendrocytes (MyOligo) in the Granule Cell Layer
- → Plp1 is expressed as Plp1-202 by olfactory ensheathing cells (OEC) in the Olfactory Nerve Layer

SiT reveals full -length sequence heterogeneity (CBS)

Global A-to-I RNA editing spatial map

- Exploration of 5,817 A-to-I RNA editing sites described in the terature (Ramaswamiet al., 2013 (RADAR)) Licht et al., 2019)
- Long read high confidence call thresholding looking at agreement between long and short read base calls for 88,175 shared lis
 - number of reads per UMI >= 3
 - consensus Phred score QV >= 6

IndividualA-to-l editing site editing ratio per region

Imaging -based Spatial Transcriptomics (2022)

No more sequencing for direct singlecell resolution

- Lower gene panel targets(from WT to ~1,000 genes)
- Higher sensitivity(from ~6% to 3080%)
- Larger imaging area(42 to 236 mm2)
- Higher resolution(from 55 µm to subcellular)

Nanostring CosMx ISH-based

VizgenMerscope Multiplex ErrorRobust FISH Available (oct.2022)

10xGenomics Xenium Padlock probes / RCA Available (jan.2024)

Single cell and Spatial isoform transcriptomics

- Accurate single-cell and spatial transcriptomics using Nanopore long-read sequencing is feasible
- Long reads sequencing reveals transcript diversity that is missed with standard short reads workflows
- Single Nucleotide Variation calls (SNV, editing) in single-cell and in a spatial context can be achieve
- Sicelore-2.1 : we don't need short reads anymore

Nanopore PromethION sequencing 2018: 20M reads/FC,92% raw read accuracy 2022: 150M reads/FC,98% raw read accuracy

- Visium and singlecell 3' and 5' libraries
- Illuminafree profiling available

Acknowledgments

Institut de Pharmacologie Moléculaire et Cellulaire

PascalBarbry's Lab (IPMC, CNRS, France)

- VirginieMagnone
- **RainerWaldmann**
- Marie-JeanneArguel

Joakim Lundeberg's Lab (KTH Royal Institute of Technology, Sweden)

🧖 😱 Omics Data Analysis

UNIVERSITÉ

- Joseph Bergensträhle
- Kim Thrane

CoBiODA IPMC bioinformatics CoBiODA Computational Biology

- Kévin Lebrigand •
- Marin Truchi •
 - Eamon McAndrew

